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Summary

We analyzed correlations between mutant genotypes at
the human phenylalanine hydroxylase locus (gene sym-
bol PAH) and the corresponding hyperphenylalaninemia
(HPA) phenotypes (notably, phenylketonuria [OMIM
261600]). We used reports, both published and in the
PAH Mutation Analysis Consortium Database, on 365
patients harboring 73 different PAH mutations in 161
different genotypes. HPA phenotypes were classified as
phenylketonuria (PKU), variant PKU, and non-PKU
HPA. By analysis both of homoallelic mutant genotypes
and of “functionally hemizygous” heteroallelic geno-
types, we characterized the phenotypic effect of 48 of
the 73 different, largely missense mutations. Among
those with consistent in vivo expression, 24 caused PKU,
3 caused variant PKU, and 10 caused non-PKU HPA.
However, 11 mutations were inconsistent in their effect:
9 appeared in two different phenotype classes, and 2
(I65T and Y414C) appeared in all three classes. Seven
mutations were inconsistent in phenotypic effect when
in vitro (unit-protein) expression was compared with the
corresponding in vivo phenotype (an emergent prop-
erty). We conclude that the majority of PAH mutations
confer a consistent phenotype and that this is concordant
with their effects, when known, predicted from in vitro
expression analysis. However, significant inconsisten-
cies, both between in vitro and in vivo phenotypes and
between different individuals with similar PAH geno-
types, reveal that the HPA-phenotype is more complex
than that predicted by Mendelian inheritance of alleles
at the PAH locus.
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Introduction

Phenylketonuria (PKU [OMIM 261600]) and allied
forms of hyperphenylalaninemia (HPA) (Scriver et al.
1995) are among the most widely ascertained “rare”
Mendelian traits in humans, because newborn screening
for HPA has become a universal public-health practice
in many regions of the world. Now that the major gene
(phenylalanine hydroxylase; symbol PAH) harboring
mutations causing HPA has been characterized, muta-
tion analysis at the PAH locus is feasible.

Ever since its discovery in 1934, it has been customary
to consider PKU as a typical Mendelian trait with au-
tosomal recessive inheritance. However, within the first
2 decades of its discovery, it became apparent that the
disorder is also “multifactorial,” with inherited (genetic)
and acquired (dietary) components, both of which are
necessary to establish the variant metabolic phenotype
(HPA); accordingly, the latter can be modified by diet
(Penrose 1946; Bickel et al. 1954; Armstrong and Tyler
1955; Woolf et al. 1955). Thereafter, it became apparent
that HPA also reflects locus heterogeneity (Scriver et al.
1995); although the vast majority of mutations respon-
sible for HPA map to the PAH locus, some occur at loci
controlling the synthesis and recycling of tetrahydro-
biopterin, the essential cofactor for catalytic activity of
phenylalanine hydroxylase enzyme. Finally, after the
PAH gene had been cloned, characterized, and made
accessible to mutation analysis (Woo et al. 1983; Kwok
et al. 1985; Lidsky et al. 1985; DiLella et al. 1986; Ko-
necki et al. 1992), many recessive mutant alleles were
identified at the PAH locus—indeed, so many (1325 dif-
ferent disease-associated mutations and many neutral
polymorphic alleles) that, to record them, a locus-specific
database (Nowacki et al. 1997) has been developed by
an international consortium.

The metabolic HPA phenotype appeared, at first, to
correlate broadly with genotype; “severe” mutations
caused PKU, and “mild” ones caused non-PKU HPA
(Okano et al. 1991a; Scriver 1991). However, this now
appears to be an oversimplification. We have analyzed
data on genotype/phenotype correlations, either pub-
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Table 1

Classification, by Type, of 73 PAH Mutations Carried
by 365 HPA Individuals

Mutation Type Mutations

Missense ( )n � 44 F39L, L41F, K42I,
A47V, L48S, I65T,
S67P, S87R, T92I,
A104D, R158Q,
I164T, G171A,
R176L, L194P,
P211T, G218V,
D222V, V230I,
G239S, R241H,
P244L, V245A,
R252Q, R261Q,
Y277D, E280K,
I283F, A300S, I306V,
A322G, F331L,
D338Y, L348V,
T380M, Y386C,
V388M, E390G,
D394A, A395P,
A403V, R408Q,
Y414C, D415N

Nulla ( )n � 29
Demonstratedb ( )n � 7 M1V, G46S, R252W,

A259V, P281L,
F299C, S349P,
R408W

Protein truncation ( )n � 7 R111X, W187X,
Y204X, R243X,
R261X, G272X,
S359X

Deletion ( )n � 2 delF39, delL364
Frameshift ( )n � 4 F55fsdelT, T186/

W187fsdelAT,
K363fsdelG,
P407fsdelC

Splice defective ( )n � 8 IVS2nt5, IVS4nt�5,
IVS6nt�2, IVS7nt1,
IVS9nt�2,
IVS10nt�11,
IVS11nt�8,
IVS12nt1

a The term implies a nonfunctional PAH enzyme
phenotype.

b Null effect demonstrated by in vitro expression anal-
ysis. A null phenotype effect was declared when enzyme
activity was stated to be below the level of detection in
the system (typically, !3% or !1% of normal).

lished or available through the PAH-mutation database,
in 365 persons harboring 161 different mutant PAH
genotypes derived from 73 different mutant alleles.
Whereas the majority of PAH alleles are consistent in
their effects on phenotype and are broadly predictive of
HPA severity, we show that the observed metabolic phe-
notype is not always consistent with the predicted effect
of genotype at the PAH locus. The findings indicate that
the HPA phenotype is a complex trait (an emergent prop-
erty), whereas inheritance of the mutant genotype is
Mendelian.

Subjects and Methods

Source of Data

Subjects (cases) were identified both from submissions
to the PAH Mutation Analysis Consortium Database
(http://www.mcgill.ca/pahdb) and from published
sources; the latter are listed in the Appendix. Data un-
published but submitted to the PAH database and listed
there as formal entries with accession numbers (“elec-
tronic publications”) are identified in the appropriate
spreadsheets and can be located in the database.

How Reports Were Selected

Only reports that described the mutant genotype (i.e.,
both mutant PAH alleles) were selected, which then were
reviewed for information about phenotypes. To define
the latter, we used (i) plasma phenylalanine levels either
in the newborn, prior to the initiation of dietary treat-
ment, or later in life, either under conditions off diet or
by using controlled protein loading during the treatment
period, and (ii) the dietary phenylalanine tolerance, to
achieve and maintain “safe” plasma phenylalanine levels
(below approximately 500 mM) during either late in-
fancy or the first 5 years of childhood, as reported by
the authors. We gave priority to dietary-tolerance data.
When information about phenotype was incomplete or
ambiguous, we contacted the report authors. Only those
patients with corresponding data on genotype and phe-
notype are included in the present report. In this way,
we identified 365 patients.

Criteria for Classification and Phenotype

We divided phenotypes associated with a mutant PAH
genotype into three broad categories: phenylketonuria
(PKU), variant PKU, and non-PKU HPA (Güttler et al.
1987; Scriver et al. 1995). The more stringent the dietary
phenylalanine tolerance (i.e., when !500 mg/d), and the
higher the plasma phenylalanine value in the untreated
state (i.e., when 11,000 mM), the more PKU like is the
phenotype, with high risk of severely impaired cognitive
development. If the plasma phenylalanine value is con-
sistently above normal (i.e., 1120 mM) but !1,000 mM
when the patient is on a normal diet, then the phenotype
is more like non-PKU HPA and apparently is associated
with a much lower risk of impaired cognitive develop-
ment. The variant PKU category is, by default, the one
that unambiguously fits neither PKU nor non-PKU HPA.

Process

Primary data were retrieved from published or in-
press reports (see Appendix) and from the database
http://www.mcgill.ca/pahdb. Each case was entered on
a spreadsheet (Microsoft Excel software), as a separate
row, under defined fields describing genotype, plasma
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Table 2

Homoallelic Subjects ( ) and Corresponding HPA Phenotype,n � 109
Related to Available Data from In Vitro Expression in Mammalian
Cells

MUTATIONa

NO. OF PATIENTS
PAH ACTIVITY IN

COS CELLS IN

VITROb

(% OF NORMAL)PKU
Variant

PKU
Non-PKU

HPA

M1V 3 !3
IVSnt5 1
I65T 1c 1c 1 26
R158Q 2c 10
T186/W187fsdelAT 1
R252W 1 !1
R261Q 3c 8c 30
R261X 2
E280K 6 1–3
P281L 5 !1
F299C 1 !3
I306V 1
IVS9nt�2 1
S349P 1 !1
IVS10nt�11 8
K363fsdelG 1
V388M 4c 43
R408Q 4 55
R408W 30 !1
Y414C 4c 4 ∼50
IVS12nt1 15

a Homoallelic state.
b From Waters et al. (1998); also see in vitro expression data field

at http://www.mcgill.ca/pahdb
c In vitro and in vivo phenotypes are inconsistent.

phenylalanine value, dietary tolerance, and other fea-
tures. The source was given an identifier number (see
Appendix), and each subject was given a unique
identifier.

Information about genotype and phenotype was then
collated, for each person, on a second spreadsheet, in
which the uppermost rows describe PAH mutations at
the 5′ end of the gene, in homoallelic or heteroallelic
states, proceeding toward the 3′ end as one reads down
the table. Each genotype (row) is keyed ultimately to the
individual (by identifiers). The number of individuals in
each cell is thus known. The complete data set can be
found in the PAH mutation database (for a link to the
“Supporting Data Repository,” where the data are avail-
able as a compressed file and a table in HTML, see the
homepage http://www.mcgill.ca/pahdb).

Data on In Vitro Expression Analysis

By the time that the present report was written, 35
human PAH mutations, putatively impairing enzyme ac-
tivity in vivo, had been studied by in vitro (unit protein)
expression analysis (Waters et al. 1998). These data were
compared with corresponding in vivo phenotypes in pa-
tients analyzed in the present study.

Use of Null Mutations

We used putative “functionally hemizygous” geno-
types (missense/null) (Guldberg et al. 1995; Romano
et al. 1996) to evaluate the effect of missense alleles in
many patients. The following nulls, grouped as in table
1, were useful for this purpose: M1V, G46S, R252W,
A259V, P281L, F299C, S349P, and R408W; R111X,
W187X, Y204X, and S359X; delF39; F55fs, and
P407fs; IVS4nt�5, IVS6nt�2, IVS7nt1, and
IVS11nt�8.

Nomenclature

It has been the convention in the PAH Mutation Anal-
ysis Consortium to use “trivial names” (Ad Hoc Com-
mittee 1996; Beutler et al. 1996). The first letter is the
reference amino acid (single-letter code), the number is
the PAH codon (cDNA [GenBank U49897]), and the
second letter indicates the amino acid substituted by a
missense mutation. The letter “X” denotes a nonsense
(stop) mutation; “del” denotes a deletion; and “fs” de-
notes a frameshift. Splice mutations are named on the
basis of intron and region, with positive numbers indi-
cating a nucleotide change at the 5′ end of the intron
and with negative numbers indicating such a change at
the 3′ end. Use of systematic names is recommended
(see S. Antonarakis [http://ariel.ucs.unimelb.edu.au:80/
∼cotton/antonara.htm]); they are given in the PAH Mu-
tation Analysis Consortium Database.

Results

Seventy-three different PAH mutations, all presumed
to be phenotype modifying, were inherited in 161 ge-
notype combinations, by 365 patients in our study. The
mutations are classified as missense or null (putative or
proved) (table 1). The majority ( [71%]) of sub-n � 258
jects were heteroallelic, but, of these, only 181 were
“functionally hemizygous.”

Homoallelic Mutant PAH Genotypes

There were 21 different homoallelic mutant genotypes
harbored by 109 individuals (table 2). All other things
being equal, the corresponding in vivo phenotypes
should reflect an effect of the mutation on PAH enzyme
activity and thus on the HPA phenotype. We classified
15 PAH mutations as “severe” (the homoallelic state
confers the PKU phenotype); 2 mutations (I65T and
V388M) conferred the variant PKU status; and 2 others
(I306V and R408Q) were classified as “mild” (non-PKU
HPA). Notably, two different homoallelic mutant geno-
types conferred more than one HPA phenotype in dif-
ferent probands; R261Q/R261Q was associated with ei-
ther PKU or variant PKU, and Y414C/Y414C was
associated with either variant PKU or non-PKU HPA.
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Table 3

Heteroallelic Subjects ( ) with “Functionally Hemizygous”n � 181
(Missense/Null) Genotypes, and Corresponding HPA Phenotype,
Related to Available Data from In Vitro Expression of Missense
Alleles in Mammalian Cells

MUTATION

NO. OF PATIENTS
PAH ACTIVITY IN

VITRO (CELL TYPE)a

(% OF NORMAL)PKU
Variant

PKU
Non-PKU

HPA

F39L 2
G46S 10 1b Not measurable

(human kidney)
A47V 1
L48S 7 4
I65T 4b 3b 1 26
S87R 1
T92I 2
A104D 5 26 (human kidney)
R158Q 6b 3 10
I164T 1
G171A 1
R176L 1
L194P 1
P211T 1
D222V 1
V230I 1
G239S 1
V245A 3
R252Q 1
R261Q 19b 5b 30
E280K 1 1–3
I283F 1
A300S 1 3
I306V 3
A322G 3 75
F331L 1
A359P 1
T380M 2
V388M 7b 43
E390G 1 1
A403V 2 1
R408Q 1b 55
Y414C 6b 44b 6 ∼50
D415N 9

a From Waters et al. (1998); also see in vitro expression data at http:
//www.mcgill.ca/pahdb

b In vivo and in vitro phenotypes are inconsistent.

Accordingly, the homoallelic genotypes are, in general,
predictive, but sometimes they reveal an apparent in-
consistency in the effect of PAH genotype on the HPA
phenotype.

Heteroallelic Mutant PAH Genotypes

Thirty-five different missense PAH mutations were in-
herited in combination with a putative null mutation,
by 181 “functionally hemizygous” individuals (table 3);
11 alleles consistently conferred the severe PKU phe-
notype, 10 conferred the non-PKU HPA phenotype, and
3 conferred the variant PKU phenotype. The remaining

11 mutations were inconsistent in effect, because each
was associated with more than one HPA phenotype.

Discordance in Classification by In Vitro (Unit Protein)
and In Vivo (Metabolic) Phenotype

Predicted and observed phenotypes were not always
concordant. The discrepancies were most apparent with
the R158Q, R261Q, V388M, and Y414C mutations in
the homoallelic state (table 2) and with these and other
mutations (G46S and R408Q) in the “functionally hem-
izygous” state (table 3). These findings show that the in
vivo (metabolic) phenotype is not necessarily the equiv-
alent of the in vitro enzymic (unit protein) phenotype.

Interindividual Inconsistency in the In Vivo PAH-
Mutation Effect

Thirty-seven PAH mutations could be classified with
reasonable confidence (table 4), but 11 were inconsistent
in their effect on phenotype in vivo. Whereas one can
imagine how a particular mutation might, by misclas-
sification of phenotype, be associated with two adjacent
phenotype classes (e.g., either PKU and variant PKU or
variant PKU and non-PKU HPA), it is unlikely that a
mutation would appear either in both outlier classes
(e.g., A300S in both PKU and non-PKU HPA) or in all
three classes (e.g., I65T and Y414C) in a large number
of probands (e.g., 55 patients with the Y414C muta-
tion). Although, for classification of allele effect, the use
of a functionally hemizygous genotype (missense/null;
table 3) is less robust than a homoallelic genotype (table
2), both approaches reveal a similar problem: the HPA
phenotype is not always consistent with the correspond-
ing PAH genotype.

We identified further ambiguities, particularly in the
functionally hemizygous state. Two probands, one with
the Y204X/IVS4nt�5 genotype and the other with
S349P/IVS10nt�11, both expected to have nonfunc-
tional enzyme phenotypes, had the variant PKU phe-
notype (data shown in the field [http://www.mcgill.ca/
pahdb]) .

Discussion

We analyzed 31 reports documenting 365 persons
with persistent HPA due to mutations at the PAH locus
on chromosome 12q24.1; these persons have 161 dif-
ferent mutant PAH genotypes arising from 73 different
HPA-producing alleles. We did not include an analysis
of the associated (neutral) polymorphic marker haplo-
types at the PAH locus on which the HPA mutations
occur; hence, we have not excluded the possibility that
a polymorphic allele might modify expression of the
PAH gene. In this metanalysis there were several in-
stances of “inconsistent” genotype-phenotype correla-
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Table 4

Classification of PAH Mutations, According to Their In Vivo HPA
Phenotypes

IN VIVO PHENOTYPE

MUTATION TYPE ( )an � 48

Missense Null

Consistent:b

PKU F39L, I164T, L194P,
P211T, D222V,
G239S, R252Q,
E280K, I283F,
F331L, A359P

M1V, IVS2nt5,
T186/
W187fsdelAT,
R252W,
R261X, P281L,
F299C,
IVS9nt�2,
S349P,
IVS10nt�11,
K363fsdelG,
R408W,
IVS12nt1

Variant PKU A104D, G171A,
D338Y

Non-PKU
HPA

A47V, S87R, T92I,
R176L, V230I,
V245A, I306V,
A322G, T380M,
D415N

Inconsistent:c

PKU or
variant PKU

G46S, L48S, R158Q,
R261Q, V388M

Variant PKU
or non-PKU
HPA

E390G, A403V,
R408Q

PKU or non-
PKU HPA

A300S

All: I65T, Y414C

a Expressed in either the homoallelic or heteroallelic (missense/null)
state.

b Unambiguous expression of mutations.
c Ambiguous expression of mutations.

tions; therefore, we took special efforts to confirm that
the reported assignments of HPA phenotype and PAH
genotype were correct in these subjects (see How Reports
Were Selected section, above).

Our findings reveal several features common to most
genetic diseases due to mutation at a major locus (Weiss
1996); for example, the PAH locus harbors many alleles,
most of which are probably unique by descent and rare
in prevalence; most PAH alleles are dependent on history
(migration and range expansion) for their present geo-
graphic distribution; most probands with HPA due to
PAH-enzyme deficiency are heteroallelic; and genotype-
phenotype relationships are more complex than would
be predicted for a Mendelian disorder. Thus, the chal-
lenge to understand PKU is no different than that for so
many other genetic diseases.

Our report is a first approximation of genotype-phe-
notype correlations in a large sample of HPA patients.
In broad terms, the findings corroborate those made in
earlier, pioneering studies (Okano et al. 1991a; Svensson

et al. 1993; Trefz et al. 1993), in others listed here in
the Appendix, and in a forthcoming multicenter report
(F. Güttler, personal communication). In brief, there are
PAH mutations with consistent severe (PKU-like) effects,
and there are others that consistently cause only minimal
HPA; and, as noted by others (Güttler et al. 1993), there
are alleles associated with an intermediate degree of
HPA. On the other hand, how mutations actually modify
the gene product (the PAH-enzyme subunit) and alter
tertiary structure and catalytic activity of the homotetra-
meric enzyme is still poorly understood. Some PAH mu-
tations appear to affect protein stability, and a few will
affect substrate or cofactor kinetics (Waters et al. 1998).
Meantime, three different approaches are being used to
analyze PAH genotype-phenotype relationships: (i) in vi-
tro expression analysis of inherited human mutations
(Waters et al. 1998), (ii) site-directed mutagenesis and
in vitro analysis of the corresponding mutant rat enzyme
(Gibbs et al. 1993; Dickson et al. 1994; Kowlessur et
al. 1995; Quinsey et al. 1997), and (iii) analysis of phe-
nylalanine metabolism in a person with a classified mu-
tant HPA phenotype (Treacy et al. 1996, 1997). Because
our analysis focuses on HPA phenotypes in vivo, it deals
with an “emergent property,” which is not the equivalent
of the unit-protein enzymic phenotype measured by in
vitro expression analysis of PAH mutations. “Emer-
gence” (or the emergent property) is that peculiarity in
which the character of the whole cannot be deduced
from even complete knowledge of the components taken
separately, in partial combinations, or in hierarchical
combinations (Mayr 1982, pp. 63–67).

Whereas it appeared initially that to know the PAH
genotype would reliably predict the HPA phenotype
(Okano et al. 1991a; Scriver 1991), it now seems that
this will not always be the case, for at least five reasons.
First, there is both the evidence of great allelic hetero-
geneity at the PAH locus and a high probability that the
proband (in any outbred population) will be heteroal-
lelic—and, therefore, a correspondingly greater potential
for variant interactions between mutant PAH-enzyme
subunits, as well as a corresponding effect on phenyl-
alanine hydroxylation; second, there is evidence for in-
trafamilial inconsistency in HPA phenotypes, explained
in some families by segregation of more than two dif-
ferent PAH alleles (Ledley et al. 1986; Guldberg et al.
1995) but in other families attributed to nonallelic fac-
tors (Di Silvestre et al. 1991; Tyfield et al. 1995; Treacy
et al. 1996); third, phenylalanine outflow from the
plasma pool involves two factors, each with high-sen-
sitivity coefficients (Kacser and Burns 1981; Salter et al.
1986)—namely, transport into hepatocytes and phenyl-
alanine hydroxylation—as well as other factors, includ-
ing protein incorporation, transamination, and regula-
tion (transcriptional and post transcriptional) of
PAH-enzyme activity, none of which (excepting hydrox-
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ylation) is under PAH-locus control and each of which
is eligible for an effect of allelic variation; fourth, bio-
logical individuality clearly does contribute to the mo-
ment-to-moment control of plasma phenylalanine value
(Scriver and Rosenberg 1973, pp. 290; Scriver et al.
1985); and fifth, cosegregation of a second mutation in
cis on a mutant PAH allele may have an effect on phe-
notype (Guldberg et al. 1996); the possible effect of a
polymorphic allele has already been mentioned .

There are indeed broad correlations between mutant
PAH genotypes and HPA phenotypes; they will have real
practical value and will give guidance for counseling and
treatment of HPA persons. However, our particular in-
terest is in the evidence both for inconsistencies among
subjects with similar genotypes and for discordance be-
tween the in vitro and in vivo effects of some mutant
alleles. The latter effects imply that it will always be
better to observe and monitor the phenotype in the par-
ticular individual than to assume that it can always be
predicted with confidence.

The inconsistencies and discordances seen here were
of two types: First, the in vivo phenotype did not nec-
essarily fit that predicted on the basis of in vitro ex-
pression analysis. The reasons why there may be a dis-
crepancy between the unit-protein phenotype in vitro
and that observed in vivo have been discussed more ex-
tensively elsewhere (Waters et al. 1998). Here, we briefly
note that protein expression of the in vitro systems is
both high level and transient. In addition, the in vitro
expression of a single mutant allele produces a hom-
oallelic unit-protein phenotype, whereas most HPA sub-
jects are heteroallelic for PAH mutations. Accordingly,
the possibility of allelic complementation, which is not
analyzed in vitro in the conventional systems, will have
to be studied in a “yeast 2–hybrid system,” for example.
Meanwhile, the R261Q allele, documented here and

elsewhere (Apold et al. 1993; Kunert et al. 1993; Bur-
gard et al. 1996), is an interesting example of possible
negative complementation in vivo, in a manner not ap-
parent in vitro.

The second form of inconsistency reveals itself in pa-
tients who have different phenotypes yet similar geno-
types and was seen here with the I65T and Y414C mu-
tations. It is unlikely that misclassification of phenotype
or genotype is the explanation for these inconsistencies.
They imply that events other than expression of the mu-
tant genotype at the major (i.e., PAH) locus itself con-
tribute to the HPA phenotype in the patient. Elsewhere,
by means of in vivo isotopic studies, we have shown that
phenylalanine hydroxylation per se does not fully ac-
count for the in vivo disposal of phenylalanine in some
HPA probands (Treacy et al. 1996, 1997). What the
events are and how they explain the inconsistencies
shown here remain unknown. The present findings sim-
ply suggest that the HPA phenotype, largely accounted
for by allelic variation at the PAH locus, sometimes be-
haves as a complex trait controlled by events not fully
accounted for by those seen at the major locus itself—an
idea expressed earlier and by others in the history of
PKU research (Langenbeck et al. 1988; Scriver et al.
1995).

We are not the first to notice discordance between the
mutant PAH genotype and a corresponding phenotype.
Untreated PKU patients do not have IQ scores fully con-
cordant with the predicted severity of the PAH genotype
(Ramus et al. 1993). However, IQ is indeed a complex
trait (or emergent property), and close correlation be-
tween its metrical value in PKU subjects and the PAH
genotype would surely be unlikely. Our own analysis of
genotype-phenotype correlations shows that the HPA
component, which functionally links the PAH genotype
with IQ, can itself behave as a complex trait.
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Appendix

Table A1

Published Sources of Cases

Reference or Source Patient IDa Article Numberb

Bénit et al. (1994) PB94.xx 1
Desviat et al. (1995) LD95.xx 2
Dianzani et al. (1995) ID95.xx 3
Dianzani and Knapps-

kog (1995)
ID95.xx 4

Dworniczak et al.
(1991)

BD91.xx 5

Eiken et al. (1996b) HGE95b.xx 6
Eiken et al. (1996a) HGE96a.xx 7
Guldberg et al. (1994b) PG94b.xx 8
Guldberg et al. (1994a) PG94a.xx 9
Guldberg et al. (1995) PG95.xx 10
John et al. (1992) SWMJ92.xx 11
Kalaydjieva et al.

(1992)
LK92.xx 12

Kleiman et al. (1993) SK93.xx 13
L. Kozak (submission

to database, 1996)
LK96.xx 14

Kunert et al. (1993) EK93.xx 15
Lyonnet et al. (1989) SL89.xx 16
Martinez-Pardo et al.

(1994)
MP94.xx 17

Okano et al. (1990) YO90.xx 18
Okano et al. (1991b) YO91b.xx 19
Pérez et al. (1994) BP94.xx 20
Pérez et al. (1995) BP95.xx 21
Romano et al. (1996) VR96.xx 22
Svensson et al. (1992) ES92.xx 23
Svensson et al. (1993) ES93.xx 24
E. Treacy (personal

communication)
ET.ML96.xx 25

Tyfield et al. (1995) LT95.xx 26
L. Tyfield (submission

to database, 1995)
LT95.xx 27

Weinstein et al. (1993) MW93.xx 28
Zschocke et al. (1994) JZ94.xx 29
Zygulska et al. (1991) MZ91.xx 30
Zygulska et al. (1994) MZ94.xx 31

a For all 365 cases studied, the code comprises the initials of the
first author of the reference, the year of publication, and the case
number (here denoted as “xx”), the latter of which has been assigned
on the basis of the order of appearance in the reference.

b As used in the complete table of genotype-phenotype correlations
available on homepage http://www.mcgill.ca/pahdb (see directions for
“supporting data repository”).

Acknowledgments

This work was presented in part at The American Society
of Human Genetics annual meeting, October 1996, in San
Francisco (Kayaalp et al. 1996). This project would not have
emerged without the generosity of Savio Woo, Randy Eisen-
smith, and their colleagues, who shared primers, sequences,

and facts over the past decade or more, in a generous manner,
with colleagues in the PAH Mutation Analysis Consortium.
We thank many members of that consortium, for their co-
operation in the present project; colleagues in the former Que-
bec Network of Genetic Medicine, for some Quebec data;
Kevin Carter, for collegial assistance; and Linda Tyfield, for
her critique of an earlier draft of the manuscript. This work
has been supported in part by the Medical Research Council
of Canada (Group in Medical Genetics), the Network of Cen-
ters of Excellence (Canadian Genetic Disease Network), Le
Fonds de la Recherche en Santé du Quebec (Réseau de Méd-
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viat LR, Ugarte M (1994) Phenotype distribution in the
Spanish phenylketonuria population and related genotypes.
J Inherit Metab Dis 17:366–368

Mayr E (1982) The growth of biological thought: diversity,
evolution and inheritance. Belknap Press of Harvard Uni-
versity Press, Cambridge, MA

Nowacki P, Byck S, Prevost L, Scriver CR (1997) The PAH
Mutation Analysis Consortium database: update 1996. Nu-
cleic Acids Res 25:139–142
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